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Abstract—As an ownership verification technique for deep
neural networks, the white-box neural network watermark is
being challenged by the functionality equivalence attack. By
leveraging the structural symmetry within a deep neural network
and manipulating the parameters accordingly, an adversary can
invalidate almost all white-box watermarks without affecting
the network’s performance. This paper introduces the linear
functionality equivalence attack, which can adapt to different
network architectures without requiring knowledge of either the
watermark or data. We also propose NeuronMap, a framework
that can efficiently neutralize linear functionality equivalence
attacks and can be easily combined with existing white-box
watermarks to enhance their robustness. Experiments conducted
on several deep neural networks and state-of-the-art white-
box watermarking schemes have demonstrated not only the
destructive power of linear functionality equivalence attacks but
also the defense capability of NeuronMap. Our result shows that
the threat of basic linear functionality equivalence attacks against
deep neural network watermarks can be effectively solved using
NeuronMap.

Index Terms—Artificial intelligence security, deep neural net-
work watermarking, functionality equivalence attack.

I. INTRODUCTION

HE emergence of deep neural networks (DNNs) has

revolutionized the field of artificial intelligence, enabling
them to perform a wide range of tasks such as game play-
ing [1], signal processing for both visual and acoustic data [2],
medical diagnosis [3], and cyber security [4], [5], [6]. This
success can be attributed to the incorporation of vast amounts
of data and the careful design of network architectures with
appropriate hyperparameters. However, as DNNs are increas-
ingly used in commercial applications, the need to trace
ownership and establish accountability has become apparent.
Therefore, there is a growing call to recognize DNN products
as intellectual property and regulate their copyright.

Two major techniques for ownership verification of DNNs
are fingerprint [7], [8], [9] and watermark [10], [11]. The
fingerprint method extracts the characteristic decision bound-
ary from a given DNN as its fingerprint, which remains

(Corresponding author: Shi-Lin Wang.)

Fang-Qi Li and Shi-Lin Wang are with the School of Electronic Information
and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240,
China. (e-mail: solour_lfq@sjtu.edu.cn; wsl@sjtu.edu.cn)

Alan Wee-Chung Liew is with the School of Information and Commu-
nication Technology, Griffith University, Gold Coast Campus, QLD 4222,
Australia. (e-mail: a.liew @griffith.edu.au)

The work described in this paper was supported in part by the National
Natural Science Foundation of China (62271307, 61771310). Our gratitude
goes to the anonymous reviewers for their efforts.

invariant against adversarial tuning and can serve as the DNN’s
identity [12]. However, since these statistics are not correlated
with the owner’s digital identity, an unforgeable ownership
proof is impossible. In contrast, watermarking schemes inject
owner-dependent information into a DNN, which can later
serve as evidence of ownership. Several watermarking schemes
for different DNN architectures have been proposed. and
several types of security have been formally proven. Integrity
authentication techniques such as passport [13] and reversible
watermarks [14] have also been proposed.

DNN watermarking schemes can be categorized into two
types: black-box schemes and white-box schemes. Black-box
DNN watermarking schemes assume that the pirated DNN
can only be accessed as an interface, and its internal states
are invisible. These schemes can protect ownership even if an
adversary steals a DNN and deploys it as an API [15], [16].
White-box DNN watermarking schemes, on the other hand,
assume that the pirated DNNs’ parameters and intermediate
responses are accessible. They can be used in cases where the
adversary distributes its model or in lawsuits where the pros-
ecutor needs to submit evidence for exculpation. Since white-
box watermarking schemes have access to the DNN'’s internal
states, they can inject owner-dependent information into the
network’s parameters [10] or the response pattern of certain
neurons [17], [18]. Retrieval of such ownership information
can be done by fuzzy rule [19], parameter mask [10], residual
extractor [20], or another neural network [17]. Ownership
test for DNN in the field usually involves both types of
watermarks [19].

Recent studies raised a new threat against white-box
DNN watermarks known as the functionality equivalence
attack [21], [22]. This attack exploits the structural symme-
try in a DNN and rearranges the neurons without affecting
the DNN’s performance. As a result, white-box watermark
verifiers are unable to trace the ownership evidence. The
functionality equivalence attack is inexpensive, does not dam-
age the pirated DNN product, and can impair almost all
existing white-box watermarking schemes. Despite its signif-
icant impact, this threat has not received adequate attention,
and there are no formal analyses and corresponding defense
mechanisms. This paper presents a formal analysis of a cate-
gory of universal functionality equivalence attack and extends
the defense method proposed in previous works [22]. The
new defense method includes additional triggers and a new
recovery strategy to neutralize this broader family of attacks.
The contributions of our paper are three-fold:
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(a) Black-box watermarking.

Fig. 1. Procedures of different DNN watermarking schemes.

o We formulate the Linear Functionality Equivalence At-
tack (LFEA), a family of universal functionality equiva-
lence attacks. LFEA is easy to conduct and can invalidate
most existing white-box watermarks without knowledge
of the watermarking scheme or the training data.

o We propose an effective countermeasure, NeuronMap,
which can neutralize LFEA. NeuronMap does not in-
terfere with DNN training or watermarking embedding
and can be seamlessly integrated to established white-
box watermarking schemes.

o We conducted extensive experiments across various DNN
architectures and white-box watermarking schemes to
demonstrate the effectiveness of NeuronMap against
LFEA. Our results show that incorporating NeuronMap
into existing white-box watermarking schemes can make
them resilient against LFEA with only a slight incremen-
tal in time consumption.

The rest of the paper is organized as follows: Sec.Il summa-
rizes the preliminaries and related works. Sec.IIl details the
threat posed by LFEA. Sec.IV presents the defense method
NeuronMap. Sec.V presents the experiment results and dis-
cussions. Finally, Sec.VI concludes the paper.

II. PRELIMINARIES AND RELATED WORKS

A. Ownership verification for DNN

Identifying DNN ownership is necessary for ensuring ac-
countability and commercialization of DNN products. A com-
prehensive overview on this toic can be found in [23], [24],
[25]. As an extension of multimedia watermark [26], DNN
watermarking is considered a promising technique for provable
ownership verification of DNNs. Formally, a DNN water-
marking scheme injects the owner’s identification information,
which we denote as Key, into a clean model, resulting in a
watermarked network DNNwy and a module Verify. To
establish a unique time-stamp, the owner can register the
digital signature of {Key,Verify} with an authorized judge
or on a distributed ledger [27]. The owner’s identifier can be
retrieved from the watermarked DNN [17], [23] with

Pr{verify(DNNwwm,Key) =Pass} >1—¢e(N), (1)

Pr{verify(DNNjyg,Key) =Fail} >1—¢€(N), (2)

Nl
activation layer

(b) Parameter-based white-box watermarking.

STl
normalization layer

(c) Response-based white-box watermarking.

where N is the security parameter (e.g., the number of
triggers), €(-) is a positive negligible function, and DNNj,q
is another independent network.

In addition to basic requirements of accuracy and unam-
biguity defined by Eq.(1) and Eq.(2), several extra security
requirements have been proposed, some of which are listed as
follows.

o Functionality-preserving: Watermark injection should
not severely damage the DNN’s performance.

o Robustness: Tuning a watermarked DNN cannot invali-
date the ownership proof.

o Covertness: It should be hard to distinguish a water-
marked DNN from a clean one [28].

« Efficiency: The watermark injection process should be
both time-friendly and memory-friendly.

For black-box watermarking schemes, the owner’s identifi-
cation is often encoded into the mapping between backdoor
triggers and the network’s outputs. Verify then checks
whether the suspect DNN contains this mapping or not,
as illustrated in Fig.1(a). Backdoors for image processing
networks [15], natural language processing networks [29],
audio processing networks [30], generative networks [31], and
pre-trained encoders [32] leverage domain-specific knowledge
to generate triggers. As for image classification networks,
triggers can take the form of stamps [33], noises [34], out-
of-dataset samples [11], and adversarial samples [35].

White-box DNN watermarking schemes operate under the
assumption that the suspect model can be fully accessed, for
instance, during model transactions and auditing [36]. Since
the verifier can monitor the intermediate states of the suspect
DNN, a significant amount of information can be embedded
into and retrieved from the DNN’s parameters, making white-
box watermarking schemes independent of the backend task.

White-box DNN watermarking schemes can be classi-
fied into into parameter-based and response-based schemes.
Parameter-based watermarking schemes extract features from
the DNN’s parameters and compare them with the registered
identification information as shown in Fig.1(b). The features
can be extracted through linear transformation [10], residual
digits [20], or the combination of multiple metrics [19].
On the other hand, response-based watermarking schemes
use a collection of response triggers, similar to black-box
watermarking schemes, but they focus on the intermediate
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TABLE I
WHITE-BOX DNN WATERMARKING SCHEMES.

Scheme | Category | Trigger |  Type of verifier
Uchida’s [10] Parameter - Linear transformation
Greedy [20] Parameter - Residual mask
MTLSign [17] Response QR codes. Neural network
DeepSign [18] Response Outliers. Masked matrix
DeepJudge [19] Response Adversarial samples. Masked matrix
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Fig. 2. The public ownership verification process for DNN.

responses from the DNN, as shown in Fig.1(c). As in backdoor
triggers, response triggers can take on various patterns, such as
special codes [17], outliers [18], and adversarially generated
samples [19], etc. Once the verifier obtains the features from
the suspect DNN’s response, it computes the loss between the
retrieved features and those claimed by the owner and returns
Pass if the loss is below than a threshold. A summary of
typical white-box DNN watermarking schemes is provided
in Table I. We remark that although DeepJudge [19] is
designed as a testing framework, its verification program is
identical to watermark verifiers.

To claim ownership over the adversary’s DNN, the owner
submits the evidence {Key,Verify} and informs the judge
of the adversary’s address. The judge independently accesses
the suspect model, runs the verifier program, and obtains the
result [27], [37]. This process is illustrated in Fig.2. Since the
goal of DNN copyright protection is to prove ownership over
unauthorized use, there is no need to transmit the DNN itself
from the owner to the judge.

B. The functionality equivalence attack

White-box DNN watermarks are vulnerable under the Func-
tionality Equivalence Attack (FEA). As illustrated in Fig.3,
compared with ordinary removal attacks, which involve tun-
ing/pruning/distillation, FEA manipulates the parameters in a
DNN and produces a new network with precisely identical
performance yet fails the watermark verifiers. Unlike network
morphism transformation [38] that aims at transferring knowl-
edge from a teacher DNN to a student DNN under morphism
changes by minimizing the performance loss, FEA has theo-
retically zero functionality decline. Intuitively, FEA is similar
to geometric attack against image watermark [39], where both
attacks aim to remove copyright information by transforming
the carrier with almost no utility sacrifice (in FEA, the cost
is measured by functionality decline, in geometric attack, the
cost is reflected by visual distortion).

watermark

vaterr — A good removal attack.
verification loss

— A poor removal attack.
- ==+ Functionality equivalence attack.
®  The watermarked DNN.

O  DNNs passing the watermark verifier.

verification

threshold ®  DNNs failing the watermark verifier.

functionality

cost of piracy decline

Fig. 3. A comparison between FEA and ordinary removal attacks.

An example of FEA is the neuron shuffling attack [22].
While the neurons within a DNN layer are assumed to be
homogeneous, they are saved as a tensor or matrix with an
order. Most watermark verifiers require information about this
order to extract ownership evidence. However, this order is
malleable from the adversary’s perspective. For example, after
shuffling the order of neurons, the verifier would fail, but the
DNN’s functionality remains unaffected after reordering the
input weights of the next layer accordingly.

Unlike adversarial tuning, model extraction, and distillation
that affect the DNN’s performance, FEA has no effect on the
DNN’s functionality and does not depend on any knowledge
about the watermarking scheme, yet it defeats almost all
existing white-box watermarking schemes and is a severe
threat to DNN copyright regulation. Although neuron shuffling
can be canceled [22], and it is possible to design watermark
that is inherently persistent against neuron shuffling using
invariant statistics, such as the averaged outputs [40], without
comprehensive and formal analysis of general FEAs, the
defense capability of these schemes remains questionable.

III. LINEAR FUNCTIONALITY EQUIVALENCE ATTACK
A. The threat model

To formally analyze FEAs, we assume that the adversary
does not modify the DNN architecture or retrain the network,
so the attack is always covert and cheap. Likewise, changing
the default behavior of elementary modules (e.g., flipping the
sign of the activation function) is not considered since they
can be trivially detected and inverted. As shown in Fig.1,
DNNs are composed of a series of feedforward modules, each
consisting of a linear mapping layer, a non-linear activation
layer, and optionally a normalization layer.

During FEA, the adversary can freely modify the parame-
ters. In particular, we are interested in the case where an FEA
parameterized by ¢ can be directly applied to any module,
so the module’s mapping is transformed from f into f®. To
preserve the network’s overall functionality, it is expected that
the transformation can be completely canceled by the next
module. Denote the weight in the following module’s linear
layer before/after the FEA by W/W?, it is sufficient that for
any input x to the module under attack,

Wf(x) = W?f9(x),
so the transformation from f to f¢ takes the linear form

1o = Wotwr,
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in which W1 is the pseudo-inverse of W?. We focus on
this family of Linear Functionality Equivalence Attack (LFEA)
since it is the most applicable and universal type of FEA.

B. The formulation of LFEA

Consider a feedforward module with I input neurons and
O output neurons. For its input vector x, this module applies
a linear transformation with weight matrix W and bias vector
b, an activation mapping ReLU, a batch normalization with
parameters (E, V,~, 3), and returns

ReLU(Wx +b) — E
vV '

In Eq.(3), x is a column vector of length I, W and b are
of size O x I and O x 1. ReLU sets negative components in
its input to zero. The shape of E, V, ~, and 3 is uniformly
O x 1. All calculations within the normalization layer are done
neuronwisely.

The adversary is free to change the order of output neurons
or multiply the output of a specific neuron by a positive factor.
These changes can be canceled by modifying the parameters
of the next feedforward module to achieve functional equiva-
lence. Such linear modifications can be compactly represented
by a matrix.

Cap(x) =B+ x

3)

Definition 1. Let @5 be the smallest subgroup of matrices
with shape O x O such that Vi, j € {1,2,--- ,0} ,k >0,

Io —Eii —Ej; + Ei; + Ej; € @),
and

IO"‘(]C—l)Ei’Z 6@8,

where Lo is the identity matrix of order O and E; ; is the
elementary matrix whose element at position (i,j) is unity,
otherwise is zero.

Definition 2. (¢-LFEA) For any ¢ € @}, modifying the
parameters within a feedforward module as follows

W? = ¢W,b? = ¢b,
E? = ¢E,V? = ¢V,
v? = ¢, B° = 6B,

where ¢o is the entrywise product of ¢ and ¢. This performs
an LFEA introduced by ¢.

The operation of ¢-LFEA is illustrated in Fig.4 and its
correctness is established in the following theorems.

Theorem 1. (Functionality equivalence) Let Cap?® denote the

mapping introduced by a module attacked by ¢-LFEA, then
Vx, Cap®(x) = ¢pCap(x).

This linear transformation can be undone by multiplying the

weight matrix of the next module by ¢~1 on the right.

Proof. Both statements are direct results of the definition
in Eq.(3). Without loss of generality, the ¢-th component of
Cap?(x) is given by the i-th component of

ReLU(¢Wx + ¢b)
Vo2V .

DB + ¢y X “4)

The definition of @, implies that the i-th row of ¢ contains
only one non-zero component, ¢; ; = k > 0. So the i-th
component of Eq.(4) is reduced to

k-ReLU(Wx +b);

ReLU(Wx + b);

kB,+kv,;x = kBj+kv;x

K2V,

V'V
which is precisely the i-th component in ¢Cap(x).

For the next module, the inputs are firstly transformed by
left multiplying another weight matrix W', and

W'cap = (W ¢ 1) (¢Cap) = (W¢~1)cap?.
This completes the proof. O

For modules without the batch normalization layer, setting
W¢? = ¢W and b? = ¢b completes a ¢-LFEA.

Theorem 2. (The completeness of @g ) CI% is the maximal
subgroup of O x O invertible matrices that satisfies the
functionality equivalence property by Theorem 1.

Proof. The bijection between FEAs allowing shuffling of
neurons with positive scaling and @g is evident. We now
consider extra linear operators that extend <I>g and prove that
they fail the universal functionality equivalence property.

The first extension is the non-positive scaling that multiplies
the response of a specific neuron by £ < 0, this is tantamount
to extending <I>$ with generator Ip + (k — 1) - E;;, where
i€{1,2,---,0},k < 0. Physically, this operation multiplies
the output of the i-th neuron by k < 0 before the ReLU unit,
which results in irreversible damage to the DNN, since ReLU
simply nullifies negative inputs.

The second extension is incorporating Ip + k - E; ; for
i,j € {1,2,---,0},i # j into ®. This is identical to adding
the outputs of several independent neurons and feeding the

summation to ReLU. This operator is in general irreversible.

1 1
0 1
output of two neurons before ReLU as my, mo, and the output
pair after ¢-LFEA and ReLU as m/, m), we have

For example,let | = 0 =2, ¢ = , denote the original

m) = ReLU(my + ma),
mb = ReLU(my).

When m} > 0, the original output can be recovered as
ReLU(my) = ReLU(m) — m}). When m/, = 0, the informa-
tion in ReLU(my) is lost, so the attacked module represents a
different function, which is contradictory to the adversary’s
purpose. These two types of extension have exhausted all
possible linear modifications for the feedforward module. [

We remark that <I>JOr is specialized for feedforward mod-
ules with ReLU family activations (e.g., LeakyReLU,
PReLU [41], etc.), the dominant category in current DNN
architectures. If a module adopts fully non-linear activations
such as Sigmoid or Tanh then the corresponding model is
reduced to the permutation matrices.

LFEA is not only designed for fully connected layers and
linearly stacked networks, but its generalization to complex
network modules is also straightforward. We show below
examples of variants of LFEA for gated recurrent unit (GRU),
2D convolutional layer, and residual structure.
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Fig. 4. ¢-LFEA on a feedforward module.

C. LFEA for recurrent units

GRU [42] is a variant of long short term memory (LSTM)
units [43] for sequential data, the feedforward formulation is:

z; = o(W,[hi_1,x4]),
r; = o(Wylhe_1,%x¢]),
h; = Tanh(Wj,[ry * hy_1, %)),
hy = (1 —2)*hi_1 +2* h,

where [h;_1,x;| denotes column concatenation. A ¢-LFEA
on this unit can be carried out as

W(zz),r,h = <<]1?) Wz,r,h’ hg) = ¢h0 5)

Cancelling the ¢-LFEA from the previous GRU layer requires
modifying the weights in the current units according to

I
! =W,. 1) 6
z,m,h ,mh (¢ 1) (6)

Theorem 3. (Recurrent functionality equivalence) Denote the
t-th output of a GRU attacked by ¢-LFEA according to Eq.(5)
as GRUf5 then Vt,x;:

GRUY (x;) = ¢GRU(xy).

This linear transformation can be reversed at the next layer

by Eq.(6).

The proof by induction is straightforward. For the case of
GRU, ¢ must be a permutation matrix, so LFEA is reduced
to the neuron shuffling attack.

D. LFEA for convolutional layers

The convolutional layer is the common building block for
image or video processing DNNs [44]. By utilizing the spatial
continuity in inputs, convolutional layers extract features that
are invariant against shifting, rotation, blurring, etc.

A 2D convolutional layer transforms I input feature maps
{Mg“};l into O output feature maps {M*}<_, . Its param-
eters are composed of O * I kernels {Ko,i}(?z)ll,i:p each of
which is a matrix of size s*s, and a bias vector b of size O x 1.
Concretely, the o-th output feature map M2™ is computed by

1
M =" M"© K, + b1,
i=1

(b) ¢-LFEA applied.

where ® denotes the 2D convolution operator, and 1 is a
matrix with the same shape as MS" whose all entries are set
as one. LFEA or the general FEA does not change the internal
structure within each feature map, otherwise, the convolution
operator would malfunction. Applying ¢-LFEA to a feedfor-
ward module with a convolutional layer changes the order
of input/output feature maps and amplifies specific neurons’
response, this is tantamount to multiplying the convolutional
weights by ¢, where each entry is now an s * s tuple

O
Kf,i = Z (bo,u : Ku7i7 @)
u=1

the change in the bias is identical to the basic case, b? =
¢b. For the convolutional layers, an analogous statement of
Theorem 1 holds.

Theorem 4. (Convolutional functionality equivalence) Denote
the output function of a convolutional module attacked by ¢-
LFEA as ConvCap? then we have ¥ {Ml’”}]

i=1"

O
ConvCapf({Mﬁ”}le) = Z Do ConvCapu({Mf"};l).

u=1

This linear transformation can be reversed by multiplying the
convolutional weight of the next module by ¢~ on the right
analogously as Eq.(7).

The proof is straightforward.

E. LFEA for residual blocks

The residual block is designed to overcome gradient van-
ishing problem in very deep neural networks [45]. A residual
block involves a shortcut connection so its inputs are directly
transferred as the baseline of its outputs, examples are given
in Fig.5(a)(b).

When the shortcut is the identity mapping as shown by
Fig.5(a), i.e., the output of the residual block takes the form:

R(x) =x+ fa(f1(x)),

then it is impossible to directly apply LFEA. Otherwise, the
default behavior of neuron-wise addition has to be modified,
which is contradictory to our assumptions about the adversary.
This fact does not imply that the output of this module must
be intact. It is possible that the previous module undergoes
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__________

(d) ¢ -LFEA applied on feedforward shortcut modules.

Fig. 5. Green modules are intact. Red modules undergoes ¢-LFEA. Blue
modules’ linear weights are multiplied by ¢~ on the right.

¢-LFEA, whose effects can pass through a module with an
identity shortcut since

PR(x) = (¢x) + df2(f1(¢ ' (¢x))).

This can be done by multiplying the weight of the first module
on the ordinary connection by ¢! on the right and applying
¢-LFEA to the last module on the route as shown in Fig.5(c).
As a result, watermarks based on the response of modules with
an identity shortcut remain unusable under LFEA.

When the shortcut is another series of feedforward modules
as Fig.5(b), ¢-LFEA can be applied to the last feedforward
modules at the end of both paths so the output neurons are
transformed. The subsequent recovery in the next residual
block w.r.t. the modified input is done accordingly by mul-
tiplying ¢! on the right for the weights of the first blocks on
both paths, as shown in Fig.5(d).

IV. THE DEFENSE FRAMEWORK: NEURONMAP
A. Motivation

LFEA could not be undone solely from the DNN’s param-
eters since any weight matrix W would have been modified
into ¢1 Wo, from which the statistics of W can no longer
be retrieved. However, the outputs of neurons under ¢-LFEA
are subjected to a transformation that can be inverted. The key
observation is that, as long as LFEA does not mix the outputs
of independent neurons, the row space of the intermediate
response for a given set of inputs is invariant. This invariance is
sufficient to retrieve ¢, which maps the neurons into their orig-
inal structure, neutralizing the effect of ¢-LFEA completely.
The overview of our defense framework, NeuronMap, is
given in Fig.6. NeuronMap works by targeting the module
where the watermark is embedded, it applies a set of triggers to
the DNN and collects responses of the target module from both
the suspect network and the owner’s network. It then estimates
¢ from this pair of responses as (b Finally, NeuronMap
applies ng L_LFEA to the watermarked module or appends c;S 1
to the original watermark verifier to perform ownership proof.

Algorithm 1 GreedyPhi(Y,Y?)

Input: The original response matrix Y and the response
matrix after LFEA Y.

Output: An estimation of the LFEA parameter (;3

1: if Y? contains O’ rows, O’ < O then

2: foro:ltong’ do

3: Y? = <Y >;

0

4 end for

5: end if

6 ¢ =1Io;

7: for o —Yld)[t((j g[ot]io

A (OB (CR

o min = [ Y?[o] - BYIo]%:

10: 1= 0;

11:  for j = o¢to 0] do

n o=

3 d= Y%l - Y%

14: if d < min then

15: min = d; i = j; Bmin = 5
16: end if

17:  end for

18: P=Io - Eo,o - Ei,i + ﬁminEo,i + Ei,o;
19: Y =PY;

20 ¢ =P,
21: end for
22: Return (;3

B. Response mapping

According to Theorem 1, the output of the feedforward
module under ¢-LFEA is left multiplied by ¢. This influence
is independent of any potential LFEAs exerted on any other
feedforward modules within the DNN.

Concretely, let T = (x1,X2,-- ,x7) be the design matrix
of NeuronMap triggers. Denote the mapping function from
the DNN’s input to the watermarked module’s response as
v(+). The original response matrix is Y = y(T) of shape
O xT. After undergoing ¢-LFEA, the response of this module
becomes Y? = ¢y(T). An estimation of ¢, which we denoted
as d) can be computed from Y and Y

$=Y'Y, ®)
or using the pseudo-inversion
d=YYT(YYT)" ! 9)

Eq.(8) can be used when O = T and Y is invertible. Eq.(9)
can be used when 7' > O so that YYT is invertible.

In practice, adversaries usually combine tuning attacks with
LFEA such that the actual response often deviates from
¢y(T). As a result, the estimate é from Eq.(8) and Eq.(9)
might not be an element in ot so ¢E_1-LFEA is undefined.
Instead, it is required that the estimate qAS lies in <I>g. To meet
this requirement, we adopt a greedy algorithm, GreedyPhi,
details are given in Algo.l. GreedyPhi iteratively searches
for the row in Y? that is closest to a row of Y modulo
a positive scaling factor. Then it includes the corresponding
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Fig. 6. The overview of NeuronMap.

Algorithm 2 verify"™(Key, DNN|T,Y)

Input: NeuronMap triggers T, the response matrix from
the owner’s model Y = DNNwy.y(T), the suspect model
DNN, the evidence Key, and the original verifier module
Verify.

Output: The ownership verification result.

1: Y? = DNN.y(T);

2 = GreedyPhi(Y,Y?);

3: Applying QS LLFEA to DNN to obtain DNN;

4: if Y contains O rows, Y? contains O’ > O rows then

5. Deleting the last O’ — O rows from the response of
DNN’s watermarked layer.

6: end if

7: Return Verify(DNN, Key).

transformation to (ﬁ, so the output of GreedyPhi always lies
in @, and ¢~ '-LFEA is well-defined.

In situations where the adversary has conducted structural
pruning, Y? would contain less than O rows. The addition
of redundant neurons as distractors is unlikely to confuse
GreedyPhi since these extra neurons cannot function sim-
ilarly to the original neurons. Otherwise, the training of
the network would be unnecessary. These extra neurons are
ignored during verification. For convolutional modules, each
output map is presented by the pixel of a fixed location so
GreedyPhi is applicable.

Notice that unlike Cap(:) defined in Eq.(3), the input of
y(-) is the same as that of the entire DNN rather than the
output of the previous module. Focusing on y(-) allows the
verifier to ignore potential LFEAs on the previous module,
which are uncorrelated to the ownership verification process.
As the last step, NeuronMap wraps the watermark verifier as
Algo.2.

C. Trigger generation

We are left with the freedom to select the NeuronMap
trigger set T. The response patterns of different neurons on T
should be sufficiently distinctive. Otherwise, the rows in Y/Y?
are similar to each other so GreedyPhi cannot correctly
estimate ¢. To accommodate this prerequisite, we propose
three categories of triggers.

1) Samples from the training dataset (D). Since the DNN
is trained to distinguish normal samples, a randomly se-
lected subset of size T, optimally from different classes,
should enjoy maximal distinguishability.

—
GreedyPhl —]|
—

(b) Phase I: Inferring the LFEA’s parameter using GreedyPhi.

Verify™

o

NeuronMap™\|;
triggers

0000

response
triggers

(c) Phase II: Running Veri fy™

2) Random triggers (R). If exposing the training dataset
has privacy or security risks then a collection of ran-
domly generated samples is an option.

3) Attack triggers (A). We can also produce attack triggers
so that the response follows specific distributions so the
difference between each pair of triggers is maximized.

To produce attack triggers, we encode target neurons from
the neurons’ outputs to maximize distinguishability and gen-
erate triggers whose response represents neurons’ codes. For
T triggers and O neurons, it is sufficient to use a C' = [ /O]
code system. The encoding process first runs a clustering
algorithm on the responses of all O neurons on normal inputs
to obtain C' centroids {mc} o—1- Then the o-th neuron’s code
is set as a tuple of length T
{flj mod C ) .

c(o) = (mL 4] mod €3 M 251 | moa 007 Y

The code table for all neurons is
D (O, T, {mc}gzl) =

D is the desired response matrix for attack triggers (.A)
to ensure maximal distinguishability. Finally, the ¢-th attack
trigger xg“ is generated so that the neuron’s response on it is
close to the t-column of D. In other words, xg“ is the minimizer
of the following loss function:

o 2
=3 ($o) =My st i)

o=1
(10)

L(x") = y(x/")-p

D. Remarks on the ambiguity risk

An additional concern is that the unambiguity condition
defined by Eq.(2) might fail for the new verifier in Algo.2.
In particular, it is possible that Verify™ recognizes an
independent DNN as the owner’s possession since it allows
more DNNs to pass the ownership examination than Verify.
To address this issue, we define the following metric.

Definition 3. (LFEA-distance) Let W1, Wy be two O x [
matrices, their LFEA-distance is defined as:

drrea(W1, W) = min |01 W 1o

T + _WQHa
P1EDS ,p2€D]

where || - || is any matrix norm.
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The LFEA-distance between two parameters W and Wy
measures how similar they can be after applying LFEA (we
remark that the third line in Algo.2 is precisely an LFEA).
If W; and W5 belong to two independent DNNs but their
LFEA-distance is small, they could be recognized as identical
by Verify™ and resulting in an ambiguity. Since ®f is a
closed group, we have the following result.

Theorem 5. ]le,WQ S fl)g then dirga (Wl,WQ) =0.
Proof. Let ¢o =1Ip and ¢1 = Wo W' € &f. O

For general cases, the LFEA-distance between two matrices
can be bounded as follows.

Theorem 6. Under matrix norm || - ||1 or || - [|oo, O < I,

max(Ws)

drrea(W1, Wa) < | Aq]] - max(W)) + [|Asl], (11)

in which max(W;) is the maximal element in W; and

”Az” = min N ||W1P7 - ¢||7
q>O

i
where P; is an I x O matrix where each column contains one
and only one unity entry and each row contains no more than
one unity entry.

Proof. According to Theorem 5, if W, and W are close to
elements in ®1 then their LFEA distance is small. Therefore,
an upper bound of their LFEA distance can be derived from
their projections in ®*. An approximate projection of W;
onto Q% (recall that we have assumed O < I) is obtained
by consecutively locating the maximal positive entry in W,
delete the elements on the corresponding row and column until
its rows are depleted. Let P, be defined as above to select
O columns out of W; so W;P; is an O x O matrix, then
W, = min seas |Wi— ¢Pi|| is W’s projection in ), the
residual is A; = W; — W, P;.

The LFEA distance can now be bounded as follows, where
we use the elementary properties of matrix norms.

foa 1
direa(W1, W) < [[WoW; W — Wy

o =1 .
= [W2W1  (WiP1 4+ Aq) — WoPy + Ag||

< ||W2W1_1A1 — Ag|

< ||W2W1_1A1|| + [ Azl

<A IW - [Wall+ s
Plugging in the definition of ||- |1 or |- ||ec yields Eq.(11). O

A corollary from Theorem 6 is that if W; and Wy are
extremely sparse and can be transformed into diagonally
dominant matrices under row/column permutation then their
direa tends to be very small, leading to potential ambiguity.
However, when the entries in W; or Wy are distributed
uniformly then it is unlikely that NeuronMap would result in
confusion. Therefore, the additional risk caused by incorporat-
ing NeuronMap as a standard preprocessing step is limited
and is outweighed by its merits. An empirical examination of
this argument is given in Sec.V-D.

E. Remarks on the compatibility with ownership verification
protocols

NeuronMap does not interfere with the training or water-
marking of the DNN, this preserving the security properties
of all established white-box DNN watermarking schemes.
Instead, NeuronMap operates on top of an ownership ver-
ification protocol as shown in Fig.2. The auxiliary evidence
{T,Y} is transmitted along with the original ownership
evidence {Key,Verify} to enable the judge to cancel po-
tential LFEAs from the suspect DNN. For compatibility with
NeuronMap, it is necessary that the underlying ownership
verification protocol allows for a secure channel between the
owner and the verifier, which is typically assumed to be
possible for white-box DNN watermarking schemes.

V. EXPERIMENTS AND DISCUSSIONS

To empirically investigate LFEA and NeuronMap, we
evaluated the performance of watermarking schemes under
three cases and organized the results as shown in Table II.

TABLE II
CASES TO BE INVESTIGATED AND THE ROADMAP OF SEC.V.

Threat
‘Watermarking

Ordinary removal attacks

LFEA and
(tuning, pruning, etc.)

hybrid attacks

Existing watermarkine sch . Has been extensively Sec.V-B
xisting watermarking schemes studicd. Table V.VLVII
Existing watermarking schemes Sec.V-D Sec.V-C
+NeuronMap ec. v Table V,VILVIIT
A. Settings

NeuronMap is compatible with almost all white-box DNN
watermarking schemes. In this paper, we chose to eveluate
Neuronmap with five state-of-the-art watermarking schemes.
The notations used in this section are summarized in Table III
for clarity.

TABLE III
THE SUMMARY OF NOTATIONS USED DURING EXPERIMENTS.

Notation | Meaning

{(t,0)} The collection of response triggers.
W The watermark parameter from the suspect DNN.
Y The watermark response from the suspect DNN.

Y, The watermark response for the n-th trigger.

W The parameter evidence provided by the owner.
Y The response evidence provided by the owner.
M The matrix encoding the ownership information.
o() Entrywise filter/step function, R — {0, 1}.

L The watermark verification loss.

Uchida’ s (U) scheme selects parameters from a DNN
and generates a target binary vector b with IV entries, together
with a matrix M as the ownership evidence. To watermark
a DNN, the parameter of interest is tuned so that after
transformed by M and a step function o(-), the number of
different bits between o(W - M) and the target vector b is
minimized. To prove the ownership, Uchida’ s provides the
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TABLE IV
DNNS FOR EVALUATION. FC AND CV DENOTE FULLY-CONNECTED LAYER AND CONVOLUTIONAL LAYER RESPECTIVELY.

| Layer one (L1) | Layer two (L2)

DNN | Size (KB) | Pretrained | Dataset | Task
Autoencoder [46] 2,818 No CIFARIO [47] Image reconstruction
LeNet [48] 245 No MNIST [49] Image classification
ResNet-34 [45] 83,267 No CIFARI10 [47] Image classification
Transformer [50] 50,891 No Wiki2 [51] Language modeling
ResNet-101 [45] 171,436 Yes ImageNet [52] Image classification
Roberta-Large [53] 1,109,856 Yes SST2 [54] Sentiment analysis

The first FC (328 neurons)
The second CV (16 neurons)
The fourth CV (128 neurons)
The second FC (200 neurons)
The twenty-second CV (512 neurons)
The tenth FC (768 neurons)

The second FC (75 neurons)
The third CV (120 neurons)
The seventh CV (256 neurons)
The third FC (200 neurons)
The seventy-sixth CV (1,024 neurons)
The twenty-first FC (3,072 neurons)

matrix and the target vector, the loss is /[y norm, & denotes
the entrywise XOR operator.

Key = (M,b),
_ Jle(W-M) & bllo
U — N .

MTLSign (MS) establishes the watermark as an additional
task for the watermarked DNN’s. It encodes the owner’s
information into N = 400 pseudorandom triggers with binary
labels {(t, ln)}fj:l and then trains a classification backend
g that takes the intermediate response from the DNN as its
input. The loss is binary classification error rate.

key = ({(tn )11 9) -

Lo~ Snet H9(Yn) # L]
N

DeepSign (DS) chooses a series of N = 100 response
triggers from a category’s outliers. It encodes the owner’s
signature into a matrix Y with the same shape as the response
design matrix. To inject the watermark, the DNN is tuned so
that the entry-wise multiplication between the response matrix
and the design matrix ends up as another binary matrix M
after filtering. Ownership verification loss is computed as the

proportion of entries that are consistent with the evidence.

key = ({(t)}, Y. M),
o (Y - ¥) & Mg
I

DeepJdudge (DJ-1) (DJ-2) generates N = 100 re-
sponse triggers by adversarially maximizing the distance be-
tween different triggers’ response patterns. DeepJudge—1
measures the [, distance between two responses,

key = ({(6)}011. Y ).
Los1=]Y =Y.

ﬁDs =

while DeepJudge—2 measures the neuron’s activation pat-
terns (a neuron is activated for a given trigger if its response
is larger than a threshold) w.r.t. [y loss.

key = (1t} Y),
oY) & o (¥)]o
Lo =

For all schemes, Verify takes the evidence from Key,
retrieves M and optionally Y from the suspect DNN, and
computes the loss. It returns Pass only if the loss is

lower than a scheme-dependent threshold, otherwise, it re-
turns Fail. To comprehensively study the accuracy of the
watermarking schemes, we viewed the watermarked DNNs as
positive samples, and other independent DNNs with the same
structure as negative samples. We then computed the False
Positive Rate (FPR)

| {DNNjpq : Verify(DNNjq,Key) = Pass} |
| {DNNipa} | ’

and True Positive Rate (TPR)

| {DNNwu : Verify(DNNwwm, Key) = Pass}|
| {DNNwwm} | ’

under different thresholds, and plotted the Receiver Operating
Characteristic (ROC) curve. Finally, the performance of the
watermarking scheme is evaluated by the Area Under ROC
Curve (AUC).

Six DNNs were considered as models to be protected, with
details given in Table IV. The first four DNNs were trained
from scratch, while the last two are pre-trained large DNNSs.
ResNet-101! is pre-trained on ImageNet and Roberta-Large?
is pre-trained on 160GB of texts. Both models have been used
as the backbone models of many real-world applications in-
cluding objection detection [55], semantic segmentation [56],
video analysis [57], cross-lingual sentiment analysis [58], and
knowledge infusion [59]. ResNet-101 and Roberta-Large were
locally fine-tuned on a 10% subset of ImageNet [52] and
SST2 [54] to simulate DNN service in the field. Without loss
of generality, each white-box watermarking scheme took two
random layers from each DNN as their inputs denoted by L1
and L2, i.e., either the parameter W or the response Y is the
concatenation of two separate parts. We used four GeForce
RTX 2080 Ti GPUs for acceleration, and all experiments are
implemented using the PyTorch framework?.

FPR =

TPR =

B. The efficacy of LFEA

The baseline results of ownership verification of all white-
box DNN watermarking schemes are presented in Table V.
Twenty watermarked DNNs and another twenty independent
DNNs were trained for each DNN structure, and the watermark
verification losses were recorded and used to compute the
AUCs for Verify and Verify™. It is observed that: (i)
LFEA succeeded in confusing the ownership verifier in most
cases, especially when it was applied to both watermark layers.
The highest AUC was only 0.59 in these cases. (ii) The more

Uhttps://pytorch.org/vision/stable/models/generated/torchvision.models.resnet 101.html

Zhttps://pytorch.org/text/main/models.html#roberta-large-encoder
3Codes will be available in https:/github.com/TemporaryUserNo7/LFEA.
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TABLE V

AUCS FOR VERIFY AND VERIF Y™ UNDER DIFFERENT SETTINGS. () MEANS NO LFEA. L1, L2, L1+L2 (MARKED IN SHADOW) DENOTES THE
LOCATION WHERE LFEA WAS APPLIED. AUC WAS MEASURED W.R.T. DNNwy AFFECTED BY LFEA vS. DNNxp.

Autoencoder LeNet
[ Verify [ Verify™ Verify [ Verify™
Scheme O [ L1 | L2 [ Li+Lz | © [ LI | L2 | Li+L2 Scheme O [ L1 | L2 [Li+Lz | © [ L1 | L2 | Li+L2
Uchida’s | 100 | 059 | 0.77 | 051 | 1.00 | 1.00 | 1.00 | 1.00 Uchida’s | 1.00 | 071 | 0.61 | 050 | 1.00 | 1.00 | 1.00 | 1.00
MTLSign 100 | 059 | 0.70 | 041 | 1.00 | 1.00 | 1.00 [ 1.00 MTLSign 1.00 | 0.65 | 0.60 | 055 | 1.00 | 1.00 | 1.00 [ 1.00
DeepSign | 1.00 | 0.66 | 0.85 | 040 | 1.00 | 1.00 | 1.00 [ 1.00 DeepSign | 1.00 | 0.84 | 071 | 051 | 1.00 | 1.00 | 1.00 [ 1.00
DeepJudge-1 | 1.00 | 0.00 | 0.03 | 000 | 1.00 | 1.00 | 1.00 [ 1.00 DeepJdudge-1 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00
DeepJudge-2 | 1.00 | 075 | 0.77 | 054 | 1.00 | 1.00 | 1.00 | 1.00 Deepdudge-2 | 1.00 | 0.80 | 0.70 | 0.59 | 1.00 | 1.00 | 1.00 | 1.00
ResNet-34 Transformer
[ Verify [ Verify™ Verify [ Verify™
Scheme § [ LT | L2 [ Li+Lz | © [ LI | Lz | Li+L2 Scheme O [ L1 | L2 [ Li+Lz | © [ LI | L2 | Li+L2
Uchida’s | 1.00 | 071 | 0.55 | 7050 | 1.00 | 1.00 | 1.00 | 1:00 Uchida’s | 1.00 | 0.64 | 0.57 | 054 | 1.00 | 1.00 | 1.00 | 1.00
MTLSign 100 | 063 | 0.54 | 050 | 1.00 | 1.00 | 1.00 [ 1.00 MTLSign 1.00 | 0.77 | 0.67 | 0.54 | 1.00 | 1.00 | 1.00 | 1.00
DeepSign | 1.00 | 078 | 0.57 | 052 | 1.00 | 1.00 | 1.00 [ 1.00 DeepSign | 1.00 | 0.65 | 0.60 | 051 | 1.00 | 1.00 | 1.00 [ 1.00
DeepJudge-1 | 1.00 | 020 | 0.12 | 005 | 1.00 | 1.00 | 1.00 [ 1.00 Deepdudge-1 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00
DeepJudge-2 | 1.00 | 0.63 | 0.54 | 051 | 1.00 | 1.00 | 1.00 [ 1.00 Deepdudge-2 | 1.00 | 0.69 | 0.57 | 0.50 | 1.00 | 1.00 | 1.00 | 1.00
ResNet-101 Roberta-Large
[ Verify [ Verify™ [ Verify [ Verify™
Scheme g T 3 [ risLz [ 0 [ L1 | L2 | Li+L2 Scheme T 3 [ LieL2 | 0 | L1 | L2 | LI+L2
Uchida’s | 1.00 | 0.60 | 0.54 | 048 | 1.00 | 1.00 | 1.00 | 1.00 Uchida’s | 1.00 | 0.66 | 0.54 [ 050 | 1.00 | 1.00 | 1.00 | 1.00
MTLSign 1.00 | 0.60 | 0.55 | 050 | 1.00 | 1.00 | 1.00 | 1.00 MTLSign 100 | 068 | 0.61 | 052 | 1.00 | 1.00 | 1.00 [ 1.00
DeepSign | 1.00 | 0.68 | 0.60 | 054 | 1.00 | 1.00 | 1.00 | 1.00 DeepSign | 1.00 | 0.67 | 0.55 | 048 | 1.00 | 1.00 | 1.00 [ 1.00
DeepJudge-1 | 1.00 | 022 | 0.07 | 000 | 1.00 | 1.00 | 1.00 [ 1.00 DeepJudge-1 | 1.00 | 0.03 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00
DeepJudge-2 | 1.00 | 0.69 | 0.58 | 050 | 1.00 | 1.00 | 1.00 [ 1.00 Deepdudge-2 | 1.00 | 0.72 | 0.67 | 0.53 | 1.00 | 1.00 | 1.00 | 1.00
boundaries drawn by watermarking verifiers are no longer
DN Ny DN Ny . . . .
DN N DN Nt valid. For DeepJudge—-1, setting a threshold to identify
DNNppg, . . .. .
£ o DNNs that have been subjected to LFEA is trivial, yet this
AP provides no evidence of ownership.
By Soo, S5 . . .
o (fe,,f”g*?miis". . For comparisons, we applied Neuron Pruning (NP) [60] and
‘@*&;”2‘ pas 37 Fine Pruning (FP) [61] as exemplary removal attacks against
TR e DNN watermarks, whose damage is larger than ordinary fine-
® $°2 . . . . .
tuning (FT) [62] with the training dataset. LFEA was applied
to both L1 and L2 within the DNN. NP randomly set a

(a) Original response distributions. (b) Response distributions after LFEA.

Fig. 7. Distributions of the response from Autoencoder’s L2, visualized
after reducing the dimensionality to two using principal component analysis.
DNNygga is DNNwy after undertaking LFEA.

neurons LFEA interfered with, the more damage it caused.
Since LFEA can be applied to all layers within a DNN, the
threat turns out to be severe. (iii) For /5 based verifiers (e.g.,
DeepJdudge-1), the AUC dropped below 0.5 after LFEA,
indicating that the loss Lp;-; was significantly larger than
that of the independent models without LFEA. Recall that
LFEA applies a linear transform to the parameters/responses,
which has a bounded impact for loss functions taking the
form of binary classification error (i.e., loss functions except
for Lps-1). For binary classification, even if LFEA leads to
a random guess, or an all zero/one guess, the loss remains
approximately 50%, the same as that produced from an inde-
pendent DNN. On the other hand, £5;-; can grow arbitrarily
large if Y is multiplied by an appropriate linear factor, so
the loss after LFEA can also grow arbitrarily large. As a
result, the loss can be larger than that computed w.r.t. an
independent DNN, causing the AUC to drop to zero. An
instance of the response’s transformation is visualized in Fig.7.
As the distributions varied significantly, the original decision

portion of parameters to zero, while FP pruned DNNyyy first
and then fine-tuned the pruned DNN for twenty epochs on
the original dataset. All attacks were terminated when the
ownership verification AUC w.r.t. all watermarking schemes
dropped below 0.6. The respective time consumption and
impact on the attacked DNN are summarized in Table VI.
The results show that compared to other adversarial tuning
methods, LFEA is cheap, data-free, and has no influence on
the DNN’s performance. Therefore, LFEA can also be applied
in conjunction with other removal attacks.

C. The efficacy of NeuronMap

Although LFEA succeeded in damaging all studied white-
box watermarking schemes, its damage was completely neu-
tralized by NeuronMap as shown in Table V. We examined
all three types of triggers and T {10, 20,50, 100}, the
AUCs of verify™ stayed at 1.0 since the responses were al-
ways perfectly recovered. For DNNj,4, applying NeuronMap
did not increase the false positive rate, and the AUC for
Verify™ remained uniformly 1.0. Note that for response-
based watermarking schemes, applying NeuronMap on the
module of L1 and L2 is sufficient. However, for parameter-
based watermarking schemes, NeuronMap has to be repeated
for the module before L1 and L2 as well to cancel potential
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TABLE VI
THE EVALUATION OF ATTACKS AGAINST WHITE-BOX WATERMARKING SCHEMES. NP AND FP WERE CONDUCTED WHEN ALL WATERMARK VERIFIERS’
AUC DROPPED UNDER 0.6. AUTOENCODER AND TRANSFORMER WERE EVALUATED BY RECONSTRUCTION LOSS. LENET, RESNET-34, RESNET-101,
AND ROBERTA-LARGE WERE EVALUATED BY CLASSIFICATION ACCURACY (%).

Attack \ Autoencoder LeNet ResNet-34
| Time (sec) [ Performance drop | Time (sec) [ Performance drop | Time (sec) | Performance drop
LFEA 3.87+0.04 0.0£0.0 3.27 + 0.86 0.0+0.0 11.00 + 0.38 0.0+0.0
NP 8.78 +£0.18 0.80 + 0.01 48.37 £ 11.41 54.10 £ 6.29 17.21 +0.40 55.41 £ 6.75
FpP 29.37 £0.19 0.04 £+ 0.00 68.91 +11.20 1.734+0.26 418.49 £ 0.38 3.57+0.17
Attack l Transformer ResNet-101 Roberta-Large
| Time (sec) [ Performance drop | Time (sec) [ Performance drop | Time (sec) | Performance drop
LFEA 2.42+0.14 0.0+0.0 42.58 £ 0.61 0.0+0.0 103.40 £0.91 0.0+0.0
NP 11.02 + 0.48 2.03 £+ 0.02 193.10 £ 26.31 39.30 +7.24 362.70 + 17.44 11.19 £+ 3.81
FP 87.90 + 8.51 0.33 +0.07 2859.20 + 125.10 3.28 +0.52 1685.40 =+ 205.00 2.91 + 0.50

SHARREdRE

(a) Response from triggers D, before FT.

SulEREIaE

(b) Response from triggers D, after FT.

(c) Response difference=10x((a)-(b)).

(d) Response from triggers R, before FT.

(g) Response from triggers A, before FT.

(e) Response from triggers R, after FT.

(h) Response from triggers A, after FT.

(f) Response difference=10x((d)-(e)).

(i) Response difference=10x((g)-(h)).

Fig. 8. Heatmaps of responses from Autoencoder’s L1, first 64 neurons, 7' = 10. In each heatmap, a row corresponds to a trigger and each column represents

a neuron.
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Fig. 9. The time consumption (sec) of applying NeuronMap.

change in the weight’s column space, which doubles the time
consumption. In both cases, it is unnecessary to calibrate
all modules within the DNN (which is possible since the
input layer is inherently intact and applying NeuronMap
consecutively to all modules can cancel all potential LFEAs),
since the watermark verifier is only interested in L1’s and L2’s
responses.

Adversaries can launch a hybrid attack that combines ad-

versarial tuning and LFEA. Once the response matrix has
been perturbed, the recovery by NeuronMap might not be
perfect. In particular, it is necessary to consider an adversary
conducting a hybrid attack by first applying FT/FP and then
LFEA to the pirated DNN. FT and FP have a smaller impact
than NP on the DNN’s performance and are universal tuning
attacks, and the tuning hyperparameters are also available to
the adversary given sufficient data [63]. The adversary is not
encouraged to apply FT or FP after conducting LFEA, since
LFEA significantly changes the distribution of both parameters
and responses, the original regularizers and hyperparameter
configurations are no longer applicable.

1) Configuration studies: To study the defensive capability
under hybrid attacks, we firstly tested the configuration of T €
{10, 20, 50,100} for triggers D, R, and A. Triggers of type
A were generated by running fuzzy clustering and optimizing
Eq.(10) using another gradient-descent optimizer.

For illustration, part of the response matrices for three kinds
of triggers in L1 of the Autoencoder before and after twenty
epochs of FT is visualized in Fig.8 (for A, we adopted C' = 2
centroids to maximize the distinguishability). Visually, the
deviations for A triggers were larger than D and R. Mean-
while, the cost of producing attack triggers became prohibitive
for complex DNNs and larger T's. The time consumption of
generating NeuronMap triggers and running GreedyPhi for
different settings is provided in Fig.9, from which we observed
that the expense in generating attack triggers exceeded that
of running GreedyPhi in most cases, while the expense in
generating the other two types of triggers was negligible.
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Fig. 10. Verification losses under FT/FP+LFEA and NeuronMap for ResNet-
34. The loss under vanilla FT/FP is marked in dashed lines.

Intuitively, a larger 7' means more information for inferring
¢ in LFEA. As shown in Fig.10, the verification loss generally
declined for a larger 7. We observed that the calibration
efficacy of trigger A was uniformly worse than the other
options. This observation, combined with Fig.9, indicates that
the optimal configuration for NeuronMap is a large T' with
cheaper triggers R.

The failure of attack triggers can be attributed to the
deviation of its responses after tuning as shown in Fig.11(a).
Attack triggers assign extremely large/small output responses
to neurons to increase distinguishability, but these responses
are more vulnerable under tuning. Consequently, the estima-
tion of ¢ with A triggers contained more outliners as illustrated
in Fig.11(b) so the calibration is worse.

2) NeuronMap against hybrid attacks: The variations
of watermark verification losses after FT/FP, LFEA, and
NeuronMap with R triggers and 7' = 100 are de-
tailed in Table VII, where we listed the increment in
verification losses after applying FT/FP, after applying
FT/FP+LFEA+NeuronMap, and the marginal loss increment
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(a) The distributions of responses. (b) The distributions of entrywise

difference between q§ and ¢.

Fig. 11. The distributions of responses w.r.t. NeuronMap triggers before/after
FT/FP. And the distributions of the difference between ¢ in LFEA and the
estimation of GreedyPhi under different types of triggers. The setting is
L2 in Autoencoder, 7" = 100.
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Fig. 12. The time consumption (sec) of training and ownership protection.

due to LFEA under FT/FP. The deviation in the response
matrices as shown in Fig.8 disturbed NeuronMap and caused
deviations in loss, yet they were small compared to the damage
of applying FT/FP.

In several cases, the marginal loss variation was negative,
so the effect of tuning was partially canceled (e.g., tuning
might amplify the output of a certain neuron and misguide
the verifier) after mapping neurons. Neither type of loss
variation was significant enough to confuse the ownership
verifier, as justified by AUCs listed in Table VIII. Therefore,
we concluded that NeuronMap can correctly defend the DNN
watermark against hybrid attacks.

We measured the time consumption of NeuronMap as an
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TABLE VII
THE VERIFICATION LOSS INCREMENT UNDER NEURONMAP AFTER UNDERTAKING HYBRID ATTACKS. FT/FP MARGINAL DENOTES THE RELATIVE
INCREMENT OF THE VERIFICATION LOSS AFTER LFEA AND NEurRONMAP COMPARED WITH FT/FP ONLY.

Threat \ Autoencoder Threat \ LeNet
| ALy | ALus | ALps | ALps-1 | ALps—2 | ALy | ALus | ALps | ALps-r | ALps—2
FT 2.9E-2 2.5E-3 74E-3 8.4E-5 5.8E-2 FT 5.5E-2 | 0.0E+0 2.9E-3 5.7E-5 3.2E-2
FT+LFEA 3.1E-2 | 2.5E-3 7.2E-3 7.8E-5 5.8E-2 FT+LFEA 54E-2 | 0.0E+0 1.0E-3 2.3E-5 2.1E-2
FT Marginal 6.9% 0.0% -2.7% -7.6% -1.0% FT Marginal -1.8% 0.0% -65.5% -59.6% -34.4%
FP 4.4E-2 1.0E-2 34E-2 3.5E-4 1.2E-1 Fp 6.4E-2 1.3E-2 2.6E-2 3.6E-4 9.7E-2
FP+LFEA 5.1E-2 | 7.5E-3 34E-2 3.5E-4 1.2E-1 FP+LFEA 6.4E-2 1.5E-2 1.2E-2 2.2E-4 6.4E-2
FP Marginal 15.9% -25.0% -0.9% -0.0% -0.0% FP Marginal 0.0% 2.5% -53.8% -38.9% -35.1%
ResNet-34 \ Transformer
Threat ‘ Threat
" ALy [ BLus [ Alos | Ao | Aloie " [ TAL T BCuws [ ALos | ALo | Aloi
FT 3.7E-2 | 3.1E-2 | 3.5E-2 8.0E-4 1.3E-1 FT 2.6E-2 1.0E-2 1.4E-1 9.1E-3 1.6E-1
FT+LFEA 4.0E-2 | 3.6E-2 | 3.3E-2 6.0E-4 1.3E-1 FT+LFEA 24E-2 1.0E-2 14E-1 7.7E-3 1.5E-1
FT Marginal 8.1% 16.1% 3.1% -26.3% -0.0% FT Marginal -7.7% 0.0% -0.0% -15.4% -0.8%
FpP 54E-2 | 5.6E-2 | 3.9E-2 9.7E-4 1.4E-1 FpP 4.6E-2 | 0.0E+0 1.4E-1 9.2E-3 1.8E-1
FP+LFEA 5.7E-2 | 64E-2 | 3.8E-2 7.3E-4 1.4E-1 FP+LFEA 4.3E-2 | 0.0E+0 1.5E-1 7.9E-3 1.8E-1
FP Marginal 3.7% 15.2% -2.8% -24.7% -0.1% FP Marginal -6.5% 0.0% 0.7% -13.4% -0.3%
ResNet-101 ‘ Roberta-Large
Th ‘ Thi

v [ TALy T ALws T ALos | Aori | Alois v ALy [ ALw | ALos [ ALora | Alsrs

FT 5.0E-2 | 3.9E-2 | 3.8E-2 1.1E-3 1.8E-1 FT 34E-2 | 2.9E-2 | 8.3E-2 6.5E-4 4.9E-2
FT+LFEA 5.2E-2 | 3.8E-2 | 3.3E-2 1.0E-3 1.7E-1 FT+LFEA 3.1E-2 3.1E-2 | 84E-2 5.7E-4 5.1E-2

FT Marginal 4.0% 33.3% 0.0% -9.1% -5.6% FT Marginal -8.8% 6.9% 1.2% -12.3% 4.1%
FP 84E-2 | 7.5E-2 | 4.5E-2 8.9E-3 2.4E-1 FP 4.7E-2 3.0E-2 | 1.0E-1 5.5E-3 8.8E-2
FP+LFEA 9.7E-2 | 4.6E-2 | 3.8E-2 9.0E-3 2.4E-1 FP+LFEA 4.0E-2 34E-2 | 99E-2 6.1E-3 1.1E-1
FP Marginal 15.5% 2.6% 2.2% 1.1% 0.0% FP Marginal | -14.9% 13.3% -9.8% 10.9% 25.0%

TABLE VIII

AUCS FOR VERIFY AND VERIF Y™ UNDER HYBRID ATTACKS, COMPUTED FROM DNNw\ UNDERGOING TUNING/HYBRID ATTACKS VS. DNNxp.
ENTRIES AFFECTED BY LFEA ARE MARKED IN SHADOW.

Autoencoder LeNet
Scheme Verify Verify™ Scheme Verify Verify™
[ FT [ FP | FT+LFEA | FP+LFEA \ FT | FP | FI+LFEA | FP+LFEA \ FT | FP | FT+LFEA | FP+LFEA \ FT | FP | FT+LFEA | FP+LFEA
Uchida’s 1.00 | 0.93 0.51 0.51 1.00 | 0.94 1.00 0.94 Uchida’s 1.00 | 0.95 0.52 0.50 1.00 | 0.95 1.00 0.95
MTLSign 1.00 | 0.99 0.41 0.39 1.00 | 0.99 1.00 0.99 MTLSign 1.00 | 0.99 0.55 0.55 1.00 | 0.99 1.00 0.99
DeepSign 0.98 | 0.96 0.40 0.40 0.98 | 0.96 0.98 0.96 DeepSign 1.00 | 0.98 0.51 0.51 1.00 | 0.98 1.00 0.98
DeepJudge-1 1.00 | 1.00 0.00 0.00 1.00 | 1.00 1.00 1.00 DeepJudge-1 1.00 | 1.00 0.00 0.00 1.00 | 1.00 1.00 1.00
DeepJudge-2 1.00 | 1.00 0.52 0.50 1.00 | 1.00 1.00 1.00 DeepJudge-2 1.00 | 1.00 0.57 0.51 1.00 | 1.00 1.00 1.00
ResNet-34 Transformer
Scheme Verify Verify™ Scheme Verify Verify™
FT FP FT+LFEA | FP+LFEA FT FP FT+LFEA | FP+LFEA FT FP FT+LFEA | FP+LFEA FT FP FT+LFEA | FP+LFEA
Uchida’s 1.00 | 1.00 0.50 0.50 1.00 | 1.00 1.00 1.00 Uchida’s 1.00 | 0.95 0.54 0.51 1.00 | 0.95 1.00 0.95
MTLSign 1.00 | 1.00 0.52 0.52 1.00 | 1.00 1.00 1.00 MTLSign 1.00 | 1.00 0.54 0.51 1.00 | 1.00 1.00 1.00
DeepSign 1.00 | 0.98 0.50 0.52 1.00 | 0.98 1.00 0.98 DeepSign 098 | 0.96 0.51 0.50 0.98 | 0.96 0.98 0.96
DeepJudge-1 1.00 | 1.00 0.05 0.02 1.00 | 1.00 1.00 1.00 DeepJudge-1 1.00 | 0.95 0.00 0.00 1.00 | 0.95 1.00 0.95
DeepJudge-2 | 1.00 | 0.94 0.51 0.51 1.00 | 0.94 1.00 0.94 DeepJudge-2 | 1.00 | 0.98 0.50 0.50 1.00 | 0.98 1.00 0.98
ResNet-101 Roberta-Large
Scheme [ Verify [ Verify™ Scheme [ Verify [ Verify™
[ FT | FP | FT+LFEA | FP+LFEA | FT | FP | FI+LFEA | FP+LFEA [FT | FP | FT+LFEA | FP+LFEA | FT | FP | FI+LFEA | FP+LFEA
Uchida’s 1.00 | 1.00 0.51 0.50 1.00 | 1.00 1.00 1.00 Uchida’s 1.00 | 0.98 0.51 0.50 1.00 | 0.98 1.00 0.98
MTLSign 1.00 | 1.00 0.50 0.50 1.00 | 1.00 1.00 1.00 MTLSign 1.00 | 1.00 0.52 0.52 1.00 | 1.00 1.00 1.00
DeepSign 1.00 | 1.00 0.52 0.50 1.00 | 0.99 1.00 0.99 DeepSign 1.00 | 0.99 0.52 0.50 1.00 | 0.99 0.98 0.99
DeepJudge-1 1.00 | 1.00 0.03 0.03 1.00 | 1.00 1.00 1.00 DeepJudge-1 1.00 | 0.98 0.00 0.00 1.00 | 0.98 1.00 0.98
DeepJudge-2 1.00 | 0.99 0.51 0.50 1.00 | 0.97 1.00 0.97 DeepJudge-2 1.00 | 0.99 0.52 0.50 1.00 | 0.99 1.00 0.99

end-to-end watermark preprocessing module and compared it
to the cost of model training and watermark injection, and
the results are shown in Fig.12. NeuronMap was relatively
inexpensive under all settings.

D. Revisiting the ambiguity risk

In Sec.IV-D, we addressed the ambiguity concern, and Ta-
ble V and Table VIII have shown that Veri fy™" does not re-
duce the AUC, i.e., applying NeuronMap on an independent
DNN using the watermarked DNN’s response pattern yields no
extra ambiguity risk. This is consistent with Theorem 6, which
predicts that the LFEA distance between dense weighting

matrices is likely to be large. However, Theorem 6 also sug-
gests that if the parameter matrices become sparse, the LFEA
distance between different DNNs’ parameters is reduced, and
there is a risk that after NeuronMap, independent DNNs
are recognized as identical, especially by parameter-based
watermarking schemes. We demonstrated this phenomenon
for Autoencoder’s L2. DNNgrpp denotes the fine-tuned/fine-
pruned version of DNNwy, which should be verified as
identical to DNNwym. We measure the [5 distance between
different DNN’s weights in L2 under different pruning rates,
and the results are shown in Fig.13, where NMwm/NMj,q de-
notes running NeuronMap whose response matrix is provided
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Fig. 13. The [l difference between weights’ from different pairs of Autoen-
coder’s L2 in sparse settings, using 7" = 100 random triggers. The pruning
rates under which the distances between homologous DNNs and independent
DNNSs became inseparable were highlighted by shadow.

by DNNwwm/DNNjyg. As predicted, when the pruning rate
increased and the DNN’s weights became sparse, the LFEA
distance between independent matrices declined. We remark
that the [, distance between a DNN’s weight and that from
another DNN calibrated by NeuronMap is an upper bound
of their dipga by definition. When the pruning rate went
above 60%, the distances between weights calibrated w.r.t.
DNNwy and DNNj,q became indistinguishable. Therefore, it
is possible that a verifier incorporating NeuronMap cannot
judge whether the source of DNNgr/pp is DNNwy or DNNjyg.
This ambiguity risk could potentially breaches DNN copyright
integrity.

Neuron pruning up to 60% for all layers is not always a
safe operation even for preventing overfitting and reducing
computation. For example, when 60% of the parameters of
LeNet and ResNet-34 were pruned, their classification accu-
racy dropped by 55.0% and 86.7%, respectively. Additionally,
while pruning can achieve sparsity of parameter, achieving
sparsity in the response matrix, especially when the triggers
are unknown, is a non-trivial challenge. Thus, we conclude
that the additional ambiguity risk of NeuronMap remains in-
significant in practice. Considering its limited time complexity
and the efficacy in canceling the damage caused by LFEA, we
recommend that NeuronMap be incorporated into white-box
watermark verifiers, thereby eliminating LFEA as a threat to
DNN copyright.

VI. CONCLUSIONS

This paper studies the functionality equivalence attack
(FEA) that poses a threat to the ownership integrity established
by DNN watermarking schemes. A general family of function-
ality equivalence attacks, LFEA, is formulated and analyzed.
Although LFEA succeeds in invalidating most existing white-
box DNN watermarking schemes, we show that it can be
neutralized with the NeuronMap framework. Extensive ex-
periments justified both the threat from LFEA and the efficacy
of the NeuronMap defense mechanism. As a result, after
incorporating NeuronMap as a preprocessing module, most
existing DNN watermarking schemes can withstand LFEA or
hybrid attacks with minimal impact on in time complexity.
Although an adversary with knowledge of the triggers (either
those of the watermarking schemes or NeuronMap) can plot a
non-linear FEA that preserves the DNN’s normal functionality

while suppressing its response for triggers, such attacks require
modifying the network architecture and are restricted to inval-
idating exposed triggers so their threat is limited. In future
work we intend to perform a more comprehensive analysis of
universal FEAs and develop new DNN watermarking schemes
that are inherently robust against such threats by utilizing
FEA-invariant DNN statistics such as the null space of the
response matrix.

REFERENCES

[1] Omid E David, Nathan S Netanyahu, and Lior Wolf, “Deepchess:
End-to-end deep neural network for automatic learning in chess,” in
International Conference on Artificial Neural Networks. Springer, 2016,
pp. 88-96.

[2] Hector E. Romero, Ning Ma, Guy J. Brown, and Elizabeth A. Hill,
“Acoustic screening for obstructive sleep apnea in home environments
based on deep neural networks,” IEEE Journal of Biomedical and Health
Informatics, vol. 26, no. 7, pp. 2941-2950, 2022.

[3] Karim Gasmi, Ibtihel Ben Ltaifa, Gaél Lejeune, Hamoud Alshammari,
Lassaad Ben Ammar, and Mahmood A Mahmood, “Optimal deep
neural network-based model for answering visual medical question,”
Cybernetics and Systems, vol. 53, no. 5, pp. 403-424, 2022.

[4] Jing Yu, Xiaojun Ye, and Hongbo Li, “A high precision intrusion
detection system for network security communication based on multi-
scale convolutional neural network,” Future Generation Computer
Systems, vol. 129, pp. 399-406, 2022.

[5] Congyuan Xu, Jizhong Shen, and Xin Du, “A method of few-shot
network intrusion detection based on meta-learning framework,” IEEE
Transactions on Information Forensics and Security, vol. 15, pp. 3540—
3552, 2020.

[6] Yujin Zhang, Luo Yu, Zhijun Fang, Neal N. Xiong, Lijun Zhang, and
Haiyue Tian, “An end-to-end deep learning model for robust smooth
filtering identification,” Future Generation Computer Systems, vol. 127,
pp. 263-275, 2022.

[7] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum, “Deep neural net-
work fingerprinting by conferrable adversarial examples,” Proceedings
of ICLR 2019, pp. 1-18, 2019.

[8] Jingjing Zhao, Qingyue Hu, Gaoyang Liu, Xiaoqiang Ma, Fei Chen,
and Mohammad Mehedi Hassan, “Afa: Adversarial fingerprinting
authentication for deep neural networks,” Computer Communications,
vol. 150, pp. 488-497, 2020.

[9] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong, “Ipguard: Pro-

tecting intellectual property of deep neural networks via fingerprinting

the classification boundary,” in Proceedings of the 2021 ACM Asia

Conference on Computer and Communications Security, 2021, pp. 14—

25.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh,

“Embedding watermarks into deep neural networks,” in Proceedings of

the 2017 ACM on International Conference on Multimedia Retrieval,

2017, pp. 269-277.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin,

Heqing Huang, and Ian Molloy, “Protecting intellectual property of

deep neural networks with watermarking,” in Proceedings of the 2018

on Asia Conference on Computer and Communications Security, 2018,

pp. 159-172.

Cheng Xiong, Guorui Feng, Xinran Li, Xinpeng Zhang, and Chuan

Qin, “Neural network model protection with piracy identification and

tampering localization capability,” in Proceedings of the 30th ACM

International Conference on Multimedia, 2022, pp. 2881-2889.

Lixin Fan, Kam Woh Ng, Chee Seng Chan, and Qiang Yang, ‘“Deepip:

Deep neural network intellectual property protection with passports,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Xiquan Guan, Huamin Feng, Weiming Zhang, Hang Zhou, Jie Zhang,

and Nenghai Yu, “Reversible watermarking in deep convolutional neural

networks for integrity authentication,” in Proceedings of the 28th ACM

International Conference on Multimedia, 2020, pp. 2273-2280.

Jie Zhang, Dongdong Chen, Jing Liao, Weiming Zhang, Huamin Feng,

Gang Hua, and Nenghai Yu, “Deep model intellectual property protec-

tion via deep watermarking,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 44, no. 8, pp. 4005-4020, 2022.

Ryota Namba and Jun Sakuma, “Robust watermarking of neural network

with exponential weighting,” in Proceedings of the 2019 ACM Asia

Conference on Computer and Communications Security, 2019, pp. 228—

240.

[10]

[11]

[12]

[13]

[14]

[15]

[16]



IEEE PREPRINT. , VOL. X, NO. X, MARCH 2023

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Fangqi Li, Lei Yang, Shilin Wang, and Liew Alan Wee-Chung, “Lever-
aging multi-task learning for unambiguous and flexible deep neural
network watermarking,” AAAI SafeAl Workshop, 2021.

Rouhani Bita Darvish, Huili Chen, and Farinaz Koushanfar, “Deepsigns:
an end-to-end watermarking framework for ownership protection of deep
neural networks,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 485-497.

Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun, Peng Cheng,
Shouling Ji, Xingjun Ma, Bo Li, and Dawn Song, “Copy, right? a testing
framework for copyright protection of deep learning models,” in 2022
IEEE Security and Privacy, 2022, pp. 1-6.

Hanwen Liu, Zhenyu Weng, and Yuesheng Zhu, “Watermarking deep
neural networks with greedy residuals,” in International Conference on
Machine Learning. PMLR, 2021, pp. 6978—6988.

Nils Lukas, Edward Jiang, Xinda Li, and Florian Kerschbaum, “Sok:
How robust is image classification deep neural network watermarking?,”
in 2021 IEEE Security and Privacy, 2022, pp. 1-13.

Fang-Qi Li, Shi-Lin Wang, and Yun Zhu, “Fostering the robustness
of white-box deep neural network watermarks by neuron alignment,”
in ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2022, pp. 3049-3053.
Mingfu Xue, Yushu Zhang, Jian Wang, and Weigiang Liu, “Intellectual
property protection for deep learning models: Taxonomy, methods,
attacks, and evaluations,” IEEE Transactions on Artificial Intelligence,
vol. 3, no. 6, pp. 908-923, 2022.

Alaa Fkirin, Gamal Attiya, Ayman El-Sayed, and Marwa A Shouman,
“Copyright protection of deep neural network models using digital
watermarking: a comparative study,” Multimedia Tools and Applications,
vol. 81, no. 11, pp. 15961-15975, 2022.

Yue Li, Hongxia Wang, and Mauro Barni, “A survey of deep neural
network watermarking techniques,” Neurocomputing, vol. 461, pp. 171-
193, 2021.

David J. Coumou and Gaurav Sharma, “Insertion, deletion codes with
feature-based embedding: A new paradigm for watermark synchroniza-
tion with applications to speech watermarking,” IEEE Transactions on
Information Forensics and Security, vol. 3, no. 2, pp. 153-165, 2008.
Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph
Keshet, “Turning your weakness into a strength: Watermarking deep
neural networks by backdooring,” in 27th {USENIX} Security Sympo-
sium ({USENIX} Security 18), 2018, pp. 1615-1631.

Tianhao Wang and Florian Kerschbaum, “Riga: Covert and robust white-
box watermarking of deep neural networks,” in Proceedings of the Web
Conference 2021, 2021, pp. 993—-1004.

Mohammad Mehdi Yadollahi, Farzaneh Shoeleh, Sajjad Dadkhah, and
Ali A. Ghorbani, “Robust black-box watermarking for deep neu-
ral network using inverse document frequency,” in 2021 IEEE Intl
Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), 2021, pp. 574-581.

Haozhe Chen, Weiming Zhang, Kunlin Liu, Kejiang Chen, Han Fang,
and Nenghai Yu, “Speech pattern based black-box model watermarking
for automatic speech recognition,” in ICASSP 2022 - 2022 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2022, pp. 3059-3063.

Ding Sheng Ong, Chee Seng Chan, Kam Woh Ng, Lixin Fan, and
Qiang Yang, “Protecting intellectual property of generative adversarial
networks from ambiguity attacks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
3630-3639.

Tianshuo Cong, Xinlei He, and Yang Zhang, “Sslguard: A watermarking
scheme for self-supervised learning pre-trained encoders,” Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022,
pp. 579-593, 2022.

Hengrui Jia, Christopher A. Choquette-Choo, Varun Chandrasekaran,
and Nicolas Papernot, “Entangled watermarks as a defense against
model extraction,” in 30th USENIX Security Symposium (USENIX
Security 21). Aug. 2021, pp. 1937-1954, USENIX Association.

Renjie Zhu, Xinpeng Zhang, Mengte Shi, and Zhenjun Tang, “Secure
neural network watermarking protocol against forging attack,” EURASIP
Journal on Image and Video Processing, vol. 2020, no. 1, pp. 1-12,
2020.

Zheng Li, Chengyu Hu, Yang Zhang, and Shanging Guo, “How to
prove your model belongs to you: a blind-watermark based framework

[36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

to protect intellectual property of dnn,” in Proceedings of ACSAC, 2019,
pp. 126-137.

Bowen Li, Lixin Fan, Hanlin Gu, Jie Li, and Qiang Yang, “Fedipr:
Ownership verification for federated deep neural network models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.
Minoru Kuribayashi, Takuro Tanaka, Shunta Suzuki, Tatsuya Yasui, and
Nobuo Funabiki, “White-box watermarking scheme for fully-connected
layers in fine-tuning model,” in Proceedings of the 2021 ACM Workshop
on Information Hiding and Multimedia Security, 2021, pp. 165-170.
Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen, “Network
morphism,” in International conference on machine learning. PMLR,
2016, pp. 564-572.

Vinicius Licks and Ramiro Jordan, “Geometric attacks on image
watermarking systems,” IEEE multimedia, vol. 12, no. 3, pp. 68-78,
2005.

Guobiao Li, Sheng Li, Zhenxing Qian, and Xinpeng Zhang, “Encryption
resistant deep neural network watermarking,” in ICASSP 2022 -
2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2022, pp. 3064-3068.

Jin Xu, Zishan Li, Bowen Du, Miaomiao Zhang, and Jing Liu, “Reluplex
made more practical: Leaky relu,” in 2020 IEEE Symposium on
Computers and Communications (ISCC). IEEE, 2020, pp. 1-7.

Ruben Tolosana, Ruben Vera-Rodriguez, Julian Fierrez, and Javier
Ortega-Garcia, “Biotouchpass2: Touchscreen password biometrics using
time-aligned recurrent neural networks,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 15, pp. 2616-2628, 2020.

Xiangbo Shu, Liyan Zhang, Yunlian Sun, and Jinhui Tang, “Host—
parasite: Graph Istm-in-Istm for group activity recognition,” IEEE
transactions on neural networks and learning systems, vol. 32, no. 2,
pp. 663-674, 2020.

Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi, “Understand-
ing of a convolutional neural network,” in 2017 international conference
on engineering and technology (ICET). leee, 2017, pp. 1-6.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770—
778.

Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew
Stevens, and Lawrence Carin, “Variational autoencoder for deep learning
of images, labels and captions,” Advances in neural information
processing systems, vol. 29, pp. 2352-2360, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al., “Learning multiple layers of
features from tiny images,” Citeseer Technical Report, 2009.

Ahmed El-Sawy, Hazem El-Bakry, and Mohamed Loey, “Cnn for
handwritten arabic digits recognition based on lenet-5,” in International
conference on advanced intelligent systems and informatics. Springer,
2016, pp. 566-575.

Li Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141-142, 2012.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement
Delangue, Anthony Moi, Pierric Cistac, Morgan Funtowicz, Joe Davi-
son, Sam Shleifer, et al., “Transformers: State-of-the-art natural language
processing,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations,
2020, pp. 38-45.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher,
“Pointer sentinel mixture models,” 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al., “Imagenet large scale visual recognition
challenge,” International journal of computer vision, vol. 115, no. 3,
pp. 211-252, 2015.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov,
“Roberta: A robustly optimized bert pretraining approach,” arXiv
preprint arXiv:1907.11692, 2019.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D
Manning, Andrew Y Ng, and Christopher Potts, “Recursive deep
models for semantic compositionality over a sentiment treebank,” in
Proceedings of the 2013 conference on empirical methods in natural
language processing, 2013, pp. 1631-1642.

Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong Deng,
and Jian Sun, “Detnet: Design backbone for object detection,” in



IEEE PREPRINT. , VOL. X, NO. X, MARCH 2023

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

Proceedings of the European conference on computer vision (ECCV),
2018, pp. 334-350.

Rongyu Zhang, Lixuan Du, Qi Xiao, and Jiaming Liu, “Comparison of
backbones for semantic segmentation network,” in Journal of Physics:
Conference Series. IOP Publishing, 2020, vol. 1544, p. 012196.
Roman Voeikov, Nikolay Falaleev, and Ruslan Baikulov, “Ttnet: Real-
time temporal and spatial video analysis of table tennis,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion Workshops, 2020, pp. 884-885.

Cong Chen, Jiansong Chen, Cao Liu, Fan Yang, Guanglu Wan, and
Jinxiong Xia, “MT-speech at SemEval-2022 task 10: Incorporating data
augmentation and auxiliary task with cross-lingual pretrained language
model for structured sentiment analysis,” in Proceedings of the 16th In-
ternational Workshop on Semantic Evaluation (SemEval-2022), Seattle,
United States, July 2022, pp. 1329-1335, Association for Computational
Linguistics.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuan-Jing Huang,
Jianshu Ji, Guihong Cao, Daxin Jiang, and Ming Zhou, “K-adapter:
Infusing knowledge into pre-trained models with adapters,” in Findings
of the Association for Computational Linguistics: ACL-IJCNLP 2021,
2021, pp. 1405-1418.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan
Kautz, “Importance estimation for neural network pruning,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 11264-11272.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg, “Fine-pruning:
Defending against backdooring attacks on deep neural networks,” in
International Symposium on Research in Attacks, Intrusions, and De-

fenses. Springer, 2018, pp. 273-294.

Shangwei Guo, Tianwei Zhang, Han Qiu, Yi Zeng, Tao Xiang, and
Yang Liu, “Fine-tuning is not enough: A simple yet effective watermark
removal attack for dnn models,” arXiv preprint arXiv:2009.08697, 2020.
Binghui Wang and Neil Zhengiang Gong, “Stealing hyperparameters in
machine learning,” in 2018 IEEE Symposium on Security and Privacy
(SP), 2018, pp. 36-52.

Fang-Qi Li received the M.S. degree in cyber
science and engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2022. He is currently
pursuing the Ph.D. degree in cyber science and
engineering in the School of Electronic Informa-
tion and Electrical Engineering, Shanghai Jiao Tong
University, Shanghai, China. His research interests
include the security of machine learning systems and
their applications in computer security.

Shi-Lin Wang (Senior Member, IEEE) received the
B.Eng. degree in electrical and eletronic engineer-
ing from Shanghai Jiao Tong University, Shanghai,
China, in 2001, and the Ph.D. degree in computer
science and engineering from the Department of
Computer Engineering and Information Technology,
City University of Hongkong, in 2004. Since 2004,
he has been with the School of Electronic Informa-
tion and Electrical Engineering, Shanghai Jiao Tong
University, where he is currently a Professor. His
research interest interests include image processing

and pattern recognition.

Alan Wee-Chung Liew (Senior Member, IEEE) is
currently a Professor with the School of Information
and Communication Technology, Griffith Univer-
sity, Australia. Prior to joining Griffith University
in 2007, he was an Assistant Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, and a Senior
Research Fellow with the Department of Electronic
Engineering, City University of Hong Kong. He is
the author of two books and more than 250 book
chapters, journals, and conference papers, and holds
two international patents. His research interests include Al and machine learn-
ing, computer vision, medical imaging, and bioinformatics. He is currently
an Associate Editor of IEEE Transactions on Fuzzy Systems and Machine
Intelligence Research.



